Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 15(5)2023 05 07.
Article in English | MEDLINE | ID: covidwho-20242796

ABSTRACT

Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.


Subject(s)
Avulavirus , Gammacoronavirus , Influenza A virus , Influenza in Birds , Animals , Ducks , Gammacoronavirus/genetics , Influenza in Birds/epidemiology , Avulavirus/genetics , Siberia/epidemiology , Phylogeny , Birds , Animals, Wild , Influenza A virus/genetics , RNA
2.
Healthc Anal (N Y) ; 3: 100151, 2023 Nov.
Article in English | MEDLINE | ID: covidwho-2274919

ABSTRACT

This paper aims to study the impacts of COVID-19 and dengue vaccinations on the dynamics of zika transmission by developing a vaccination model with the incorporation of saturated incidence rates. Analyses are performed to assess the qualitative behavior of the model. Carrying out bifurcation analysis of the model, it was concluded that co-infection, super-infection and also re-infection with same or different disease could trigger backward bifurcation. Employing well-formulated Lyapunov functions, the model's equilibria are shown to be globally stable for a certain scenario. Moreover, global sensitivity analyses are performed out to assess the impact of dominant parameters that drive each disease's dynamics and its co-infection. Model fitting is performed on the actual data for the state of Amazonas in Brazil. The fittings reveal that our model behaves very well with the data. The significance of saturated incidence rates on the dynamics of three diseases is also highlighted. Based on the numerical investigation of the model, it was observed that increased vaccination efforts against COVID-19 and dengue could positively impact zika dynamics and the co-spread of triple infections.

3.
Comput Struct Biotechnol J ; 20: 4015-4024, 2022.
Article in English | MEDLINE | ID: covidwho-2288930

ABSTRACT

Co-infection of RNA viruses may contribute to their recombination and cause severe clinical symptoms. However, the tracking and identification of SARS-CoV-2 co-infection persist as challenges. Due to the lack of methods for detecting co-infected samples in a large amount of deep sequencing data, the lineage composition, spatial-temporal distribution, and frequency of SARS-CoV-2 co-infection events in the population remains unclear. Here, we propose a hypergeometric distribution-based method named Cov2Coinfect with the ability to decode the lineage composition from 50,809 deep sequencing data. By resolving the mutational patterns in each sample, Cov2Coinfect can precisely determine the co-infected SARS-CoV-2 variants from deep sequencing data. Results from two independent and parallel projects in the United States achieved a similar co-infection rate of 0.3-0.5 % in SARS-CoV-2 positive samples. Notably, all co-infected variants were highly consistent with the co-circulating SARS-CoV-2 lineages in the regional epidemiology, demonstrating that the co-circulation of different variants is an essential prerequisite for co-infection. Overall, our study not only provides a robust method to identify the co-infected SARS-CoV-2 variants from sequencing samples, but also highlights the urgent need to pay more attention to co-infected patients for better disease prevention and control.

4.
Front Public Health ; 10: 1086849, 2022.
Article in English | MEDLINE | ID: covidwho-2243029

ABSTRACT

The co-circulation of two respiratory infections with similar symptoms in a population can significantly overburden a healthcare system by slowing the testing and treatment. The persistent emergence of contagious variants of SARS-CoV-2, along with imperfect vaccines and their waning protections, have increased the likelihood of new COVID-19 outbreaks taking place during a typical flu season. Here, we developed a mathematical model for the co-circulation dynamics of COVID-19 and influenza, under different scenarios of influenza vaccine coverage, COVID-19 vaccine booster coverage and efficacy, and testing capacity. We investigated the required minimal and optimal coverage of COVID-19 booster (third) and fourth doses, in conjunction with the influenza vaccine, to avoid the coincidence of infection peaks for both diseases in a single season. We show that the testing delay brought on by the high number of influenza cases impacts the dynamics of influenza and COVID-19 transmission. The earlier the peak of the flu season and the greater the number of infections with flu-like symptoms, the greater the risk of flu transmission, which slows down COVID-19 testing, resulting in the delay of complete isolation of patients with COVID-19 who have not been isolated before the clinical presentation of symptoms and have been continuing their normal daily activities. Furthermore, our simulations stress the importance of vaccine uptake for preventing infection, severe illness, and hospitalization at the individual level and for disease outbreak control at the population level to avoid putting strain on already weak and overwhelmed healthcare systems. As such, ensuring optimal vaccine coverage for COVID-19 and influenza to reduce the burden of these infections is paramount. We showed that by keeping the influenza vaccine coverage about 35% and increasing the coverage of booster or fourth dose of COVID-19 not only reduces the infections with COVID-19 but also can delay its peak time. If the influenza vaccine coverage is increased to 55%, unexpectedly, it increases the peak size of influenza infections slightly, while it reduces the peak size of COVID-19 as well as significantly delays the peaks of both of these diseases. Mask-wearing coupled with a moderate increase in the vaccine uptake may mitigate COVID-19 and prevent an influenza outbreak.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Seasons , Pandemics , COVID-19 Testing , SARS-CoV-2 , Vaccination , Models, Theoretical
5.
Emerg Infect Dis ; 29(2): 371-380, 2023 02.
Article in English | MEDLINE | ID: covidwho-2215191

ABSTRACT

The Omicron variant of SARS-CoV-2 has become dominant in most countries and has raised significant global health concerns. As a global commerce center, New York, New York, USA, constantly faces the risk for multiple variant introductions of SARS-CoV-2. To elucidate the introduction and transmission of the Omicron variant in the city of New York, we created a comprehensive genomic and epidemiologic analysis of 392 Omicron virus specimens collected during November 25-December 11, 2021. We found evidence of 4 independent introductions of Omicron subclades, including the Omicron subclade BA.1.1 with defining substitution of R346K in the spike protein. The continuous genetic divergence within each Omicron subclade revealed their local community transmission and co-circulation in New York, including both household and workplace transmissions supported by epidemiologic evidence. Our study highlights the urgent need for enhanced genomic surveillance and effective response planning for better prevention and management of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , Humans , New York/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Commerce
6.
Euro Surveill ; 27(5)2022 02.
Article in English | MEDLINE | ID: covidwho-1700766

ABSTRACT

BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Models, Theoretical
7.
China CDC Wkly ; 3(49): 1052-1056, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1548010
8.
Pathogens ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542699

ABSTRACT

The RT-qPCR method remains the gold standard and first-line diagnostic method for the detection of SARS-CoV-2 and flaviviruses, especially in the early stage of viral infection. Rapid and accurate viral detection is a starting point in the containment of the COVID-19 pandemic and flavivirus outbreaks. However, the shortage of diagnostic reagents and supplies, especially in resource-limited countries that experience co-circulation of SARS-CoV-2 and flaviviruses, are limitations that may result in lesser availability of RT-qPCR-based diagnostic tests. In this study, the utility of RNA-free extraction methods was assessed for the direct detection of SARS-CoV-2 and DENV-2 in heat-inactivated or chemical-inactivated samples. The findings demonstrate that direct real-time RT-qPCR is a feasible option in comparison to conventional real-time RT-qPCR based on viral genome extraction-based methods. The utility of heat-inactivation and direct real-time RT-qPCR for SARS-CoV-2, DENV-2 viral RNA detection was demonstrated by using clinical samples of SARS-CoV-2 and DENV-2 and spiked cell culture samples of SARS-CoV-2 and DENV-2. This study provides a simple alternative workflow for flavivirus and SARS-CoV-2 detection that includes heat inactivation and viral RNA extraction-free protocols, with aims to reduce the risk of exposure during processing of SARS-CoV-2 biological specimens and to overcome the supply-chain bottleneck, particularly in resource limited settings with flavivirus co-circulation.

9.
Life (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1202314

ABSTRACT

Some emergent SARS-CoV-2 variants raise concerns due to their altered biological properties. For both B.1.1.7 and B.1351 variants, named as variants of concern (VOC), increased transmissibility was reported, whereas B.1.351 was more resistant to multiple monoclonal antibodies (mAbs), as well as convalescent and vaccination sera. To test this hypothesis, we examined the proportion of VOC over time across different geographic areas where the two VOC, B.1.1.7 and B.1.351, co-circulate. Our comparative analysis was based on the number of SARS-CoV-2 sequences on GISAID database. We report that B.1.1.7 dominates over B.1.351 in geographic areas where both variants co-circulate and the B.1.1.7 was the first variant introduced in the population. The only areas where B.1.351 was detected at higher proportion were South Africa and Mayotte in Africa, where this strain was associated with increased community transmission before the detection of B.1.1.7. The dominance of B.1.1.7 over B.1.351 could be important since B.1.351 was more resistant to certain mAbs, as well as heterologous convalescent and vaccination sera, thus suggesting that it may be transmitted more effectively in people with pre-existing immunity to other VOC. This scenario would lessen the effectiveness of vaccine and urge the need to update them with new strains.

SELECTION OF CITATIONS
SEARCH DETAIL